Keras中文文档总结

keras 流程以及重要的函数简介


步骤:

先指定模型 Sequential( )  ---->堆叠模块 .add( ) ---->编译模型 .compile( ) ---->在训练数据上迭代 .fit( ) ---->评估 .evaluate( ) ---->对新数据的预测 .predict( )

 

 

 

Dense 全连接层案例

Bp 神经网络的简单实现

from keras.models import Sequential #导入模型

from keras.layers import Dense #导入bp层

train_x,train_y #训练集

test_x,text_y #测试集

model=Sequential() #初始化模型

model.add(Dense(input_dim=3,output_dim=3,activation='sigmoid',init='uniform'))) #添加一个隐含层,注:只是第一个隐含层需指定input_dim

model.add(Dense(1,activation='sigmoid')) #添加输出层

model.compile(loss='binary_crossentropy', optimizer='sgd') # 编译,指定目标函数与优化方法

model.fit(train_x,train_y ) # 模型训练

model.evaluate(test_x,text_y ) #模型测试

___________________________________________________________________________________________

输入数据shape

编译

 

训练

______________________________________________________________________________________

 

 

Sequential模型

 

 

模型使用前必须编译

 

 

 

 

 

 

 

以上都是Sequential模型

__________________________________________________________________________________________

 

______________________________________________________________________________

 

 

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页