Tensorflow常用函数(简)

tensor :  张量,其实就是矩阵

 Variable:变量的意思。一般用来表示图中的各计算参数,包括矩阵,向量等。

placeholder :同样是一个抽象的概念。用于表示输入输出数据的格式。告诉系统:这里有一个值/向量/矩阵,现在我没法给你具体数值,不过我正式运行的时候会补上的!

session:会话。我的理解是,session是抽象模型的实现者。为什么之前的代码多处要用到session?因为模型是抽象的嘛,只有实现了模型以后,才能够得到具体的值。同样,具体的参                  数训练,预测,甚至变量的实际值查询,都要用到session,


矩阵生成

                   

产生尺寸为shape的张量(tensor)

                     tf.ones(shape,type=tf.float32,name=None)

                     tf.zeros([2, 3], int32)

 

新建一个与给定的tensor类型大小一致的tensor,其所有元素为1和0

                     tf.ones_like(tensor,dype=None,name=None)

                     tf.zeros_like(tensor,dype=None,name=None)

 

创建一个形状大小为shape的tensor,其初始值为value

                     tf.fill(shape,value,name=None)

 

创建一个常量tensor,按照给出value来赋值,可以用shape来指定其形状。value可以是一个数,也可以是一个list。

                     tf.constant(value,dtype=None,shape=None,name=’Const’)

 

生成随机数tensor的。尺寸是shape

tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

tf.random_uniform(shape,minval=0,maxval=None,dtype=tf.float32,seed=None,name=None)

 

random_normal: 正太分布随机数,均值mean,标准差stddev

truncated_normal:截断正态分布随机数,均值mean,标准差stddev,不过只保留[mean-2*stddev,mean+2*stddev]范围内的随机数

random_uniform:均匀分布随机数,范围为[minval,maxval]

 

 

如果在该命名域中之前已经有名字=name的变量,则调用那个变量;如果没有,则根据输入的参数重新创建一个名字为name的变量。

                    get_variable(name, shape=None, dtype=dtypes.float32, initializer=None,

                                    regularizer=None, trainable=True, collections=None,

                                    caching_device=None, partitioner=None, validate_shape=True,

                                    custom_getter=None):                                                                                                      

 

name: 这个不用说了,变量的名字

shape: 变量的形状,[]表示一个数,[3]表示长为3的向量,[2,3]表示矩阵或者张量(tensor)

dtype: 变量的数据格式,主要有tf.int32, tf.float32, tf.float64等等


 

矩阵变化

 

返回张量的形状。但是注意,tf.shape函数本身也是返回一个张量。而在tf中,张量是需要用sess.run(Tensor)来得到具体的值的。

tf.shape(Tensor)

 

为张量+1维。

                     tf.expand_dims(Tensor, dim)

 

将一个R维张量列表沿着axis轴组合成一个R+1维的张量。

                     tf.pack(values, axis=0, name=”pack”)

  

稀疏矩阵转密集矩阵

                     tf.sparse_to_dense

 

将张量沿着指定维数拼接起来。个人感觉跟前面的pack用法类似

                     tf.concat(concat_dim, values, name=”concat”)

 

沿着value的第一维进行随机重新排列

                     tf.random_shuffle(value,seed=None,name=None)

 

找到给定的张量tensor中在指定轴axis上的最大值/最小值的位置。

                     tf.argmax(input=tensor,dimention=axis)

 

判断两个tensor是否每个元素都相等。返回一个格式为bool的tensor

                     tf.equal(x, y, name=None):

 

将x的数据格式转化成dtype.例如,原来x的数据格式是bool,那么将其转化成float以后,就能够将其转化成0和1的序列。反之也可以

                     cast(x, dtype, name=None)

 

用来做矩阵乘法。若a为l*m的矩阵,b为m*n的矩阵,那么通过tf.matmul(a,b) 结果就会得到一个l*n的矩阵

                     tf.matmul

将tensor按照新的shape重新排列。

                     reshape(tensor, shape, name=None)


神经网络相关操作

tf.nn.embedding_lookup

      将一个数字序列ids转化成embedding序列表示。

 

tf.trainable_variables

      返回所有可训练的变量。在创造变量(tf.Variable, tf.get_variable 等操作)时,都会有一个trainable的选项,表示该变量是否可训练。这个函数会返回图中所有trainable=True的变量。

 

tf.gradients

      用来计算导数。

 

tf.clip_by_global_norm

      修正梯度值,用于控制梯度爆炸的问题。梯度爆炸和梯度弥散的原因一样,都是因为链式法则求导的关系,导致梯度的指数级衰减。为了避免梯度爆炸,需要对梯度进行修剪。

 

tf.nn.dropout

      按概率来将x中的一些元素值置零,并将其他的值放大。


普通操作

tf.linspace(start,stop,num,name=None)

tf.range(start,limit=None,delta=1,name=’range’)

        产生等差数列,

 

tf.assign

        assign(ref, value, validate_shape=None, use_locking=None, name=None)       

        tf.assign是用来更新模型中变量的值的。ref是待赋值的变量,value是要更新的值

 


Keras

batch:深度学习的优化算法,说白了就是梯度下降。

epochs:指的就是训练过程中数据将被“轮”多少次,就这样。

已标记关键词 清除标记
相关推荐
DirectX修复工具(DirectX Repair)是一款系统级工具软件,便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复。程序主要针对0xc000007b问题设计,可以完美修复该问题。本程序中包含了最新版的DirectX redist(Jun2010),并且全部DX文件都有Microsoft的数字签名,安全放心。 本程序为了应对一般电脑用户的使用,采用了易用的一键式设计,只要点击主界面上的“检测并修复”按钮,程序就会自动完成校验、检测、下载、修复以及注册的全部功能,无需用户的介入,大大降低了使用难度。在常规修复过程中,程序还会自动检测DirectX加速状态,在异常时给予用户相应提示。 本程序适用于多个操作系统,如Windows XP(需先安装.NET 2.0,详情请参阅“致Windows XP用户.txt”文件)、Windows Vista、Windows 7、Windows 8、Windows 8.1、Windows 8.1 Update、Windows 10,同时兼容32位操作系统和64位操作系统。本程序会根据系统的不同,自动调整任务模式,无需用户进行设置。 本程序的V4.0版分为标准版、增强版以及在线修复版。所有版本都支持修复DirectX的功能,而增强版则额外支持修复c++的功能。在线修复版功能与标准版相同,但其所需的数据包需要在修复时自动下载。各个版本之间,主程序完全相同,只是其配套使用的数据包不同。因此,标准版和在线修复版可以通过补全扩展包的形式成为增强版。本程序自V3.5版起,自带扩展功能。只要在主界面的“工具”菜单下打开“选项”对话框,找到“扩展”标签,点击其中的“开始扩展”按钮即可。扩展过程需要Internet连接,扩展成功后新的数据包可自动生效。扩展用时根据网络速度不同而不同,最快仅需数秒,最慢需要数分钟,烦请耐心等待。如扩展失败,可点击“扩展”界面左上角小锁图标切换为加密连接,即可很大程度上避免因防火墙或其他原因导致的连接失败。 本程序自V2.0版起采用全新的底层程序架构,使用了异步多线程编程技术,使得检测、下载、修复单独进行,互不干扰,快速如飞。新程序更改了自我校验方式,因此使用新版本的程序时不会再出现自我校验失败的错误;但并非取消自我校验,因此程序安全性与之前版本相同,并未降低。 程序有更新系统c++功能。由于绝大多数软件运行时需要c++的支持,并且c++的异常也会导致0xc000007b错误,因此程序在检测修复的同时,也会根据需要更新系统中的c++组件。自V3.2版本开始使用了全新的c++扩展包,可以大幅提高工业软件修复成功的概率。修复c++的功能仅限于增强版,标准版及在线修复版在系统c++异常时(非丢失时)会提示用户使用增强版进行修复。除常规修复外,新版程序还支持C++强力修复功能。当常规修复无效时,可以到本程序的选项界面内开启强力修复功能,可大幅提高修复成功率。请注意,请仅在常规修复无效时再使用此功能。 程序有两种窗口样式。正常模式即默认样式,适合绝大多数用户使用。另有一种约模式,此时窗口将只显示最基本的内容,修复会自动进行,修复完成10秒钟后会自动退出。该窗口样式可以使修复工作变得更加单快速,同时方便其他软件、游戏将本程序内嵌,即可进行无需人工参与的快速修复。开启约模式的方法是:打开程序所在目录下的“Settings.ini”文件(如果没有可以自己创建),将其中的“FormStyle”一项的值改为“Simple”并保存即可。 新版程序支持命令行运行模式。在命令行中调用本程序,可以在路径后直接添加命令进行相应的设置。常见的命令有7类,分别是设置语言的命令、设置窗口模式的命令,设置安全级别的命令、开启强力修复的命令、设置c++修复模式的命令、控制Direct加速的命令、显示版权信息的命令。具体命令名称可以通过“/help”或“/?”进行查询。 程序有高级筛选功能,开启该功能后用户可以自主选择要修复的文件,避免了其他不必要的修复工作。同时,也支持通过文件进行辅助筛选,只要在程序目录下建立“Filter.dat”文件,其中的每一行写一个需要修复文件的序号即可。该功能仅针对高级用户使用,并且必须在正常窗口模式下才有效(约模式时无效)。 本程序有自动记录日志功能,可以记录每一次检测修复结果,方便在出现问题时,及时分析和查找原因,以便找到解决办法。 程序的“选项”对话框中包含了7项高级功能。点击"常规”选项卡可以调整程序的基本运行情况,包括日志记录、安全级别控制、调试模式开启等。只有开启调试模式后才能在C
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页